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16 Abstract

An alrscrew-type calculation is employed to determine the
power output of birds' pectoral muscles in level flight,
without recourse to aerodynamic forece coefficlient. Down-

. stroke power is derived from required 1lift, point of
~application of tangential force along wing, and angular

" velocity. Kinematic data (duration of downstroke, duration 9
accelerated rotation at start of downstroke, and duration

of total cycle, flight speed, stroke angle, stroke angle

- bisector) are obtained from films. Sample flights of pigeons

. and doves are analyzed, and compared with metabolic-
physiological results, confirming the usability of this
method. In both species, the power output per unit weight
of the pectoral muscles (0.26-0.6C HP/kg) under prolonged
load is 10 to 20 times that of mammalian muscles, except,
probably, for the flight muscles of uvats.
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CALCULATION OF MUSCULAR POWER IN FLAPPING FLIGHT OF BIRDS
FROM KINEMATIC AND MORPHOLOGICAL DATA

H. Oehme and U. Kitzler

Vertebrate Research Center of East German
Academy of Sciences (in Berlin Zoo)

Introduction

The muscular power generated by a bird during flapping
flight is a problem which has been discussed many times. If,
like Brown (1961 a, b), one starts from the position that
the power output of flight muscles, in particular that of the
musculus pectoralis, 1s no larger than that of mammalian muscles
further analysis of flight compels one to assume that the flying
bird has virtually ldeal aerodynamic properties. This is becaus
experimentally determined contlnuous and peak powers of
mammalian muscles (see Henderson and Haggard 1925; Dickinson
1928; Brody 1945) are not large enough to supply the energy
required during a wing stroke, even assuming the most favorable
possible flow-mechanical conditlions. Power outputs per unit
weight of flight musculature in the range 0.6-3.8 HP/kg are know
from various insect speé¢ies (Nachtigall 1968), and even
calculations of the "motor power" of a flapping bird employing
certain aerodynamic assumptions (Oehme 1963, 1965; Pennycuick
1968 b; Oehme 1968 a, 1970 b) yielded specific muscular powers
which far exceeded the "mammalian norm" (0.03-0.05 HP/kg).

It is true that there were large individual variations in these
results. Nevertheless, metabollc studies on flying birds
(Pearson 1950, 1953; Lasiewski 1963; Pearson 1964; LeFebvre
1964; Tucker 1968 a and b, 1969) established, despite some
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conflicting results, that the power output of the avian pectoralis
must be substantlally higher than that of mammalian muscles. So
far, such findings have been obtained with very few specles
(hummiagbird, pigeon, parrakeet, sea gull). If the "motor power"
of birds in free flight can be determined by other methods, this
will be an important advance and may make it possible to make
comparisons relatively soon between various speciles.

Complete computation of avian flight on aerodynamic principles
requires a large number of parameters which can only be estimated
or must simply be assumed, since they are different if not impossible
to determine in a flying bird. In the sequel, we will present
a possible method for calcualting flight power which requires /U427
relatively few and relatively readily measurable kinematic
and morphological parameters. We will show how many of the
initial values necessary in a strict aerodynamic treatment can
be eliminated. The procedure is limited to unaccelerated
horizontal flight. Special forms of flapping flight such as
hovering, acceleration, and braking are not included. Nevertheless,
the prolonged effort of horizontal and accelerated flight seems
quite suitable for characterizing the energy consumed by the
local motor apparatus of a flying animal.

The procedure will be developed and discussed in the first
part of the work, and the results obtained by applying it to
two species will be presented in the second part.

Part I: Calculatlon Procedure
List of Symbols

Symbol Meaning
R Length of extended wing from shoulder joint

to wing tip = radius of screwcircle of propeller
r Distance along R of the wing element from axis

of rotation



r/R

1/R

Meaning

Distance of body contour of bird [from axis of
rotation]

Distance of point of application of total
circumferential force, effective radius

Radio coordinate

Chord depth of wing element = chord depth at r
Relative chord depth

Angle of advance of wing element

® = arctan v (1 + a)/[w r(1 - b)]

Wing angle, angle between R and horizontal
Wing angle at conclusion of angular acceleration
of downstroke

Upper and lower limits of stroke angle

Angle of asymmetry of stroke angle

Time

Duration of downstroke

Duration of accelerated downstroke

Duration of stroke cycle

Average 1ift during downstroke and upstroke
respectively

Relatlive stroke

Torque

Power

Average power of pair of wings durling downstroke
Relative power

Density of air

Lift or normal force coefflcient

Profile drag coefficient

Profile drag-life ratio

Thrust coefficient of wing element
Circumferential force coeffiloient of wing element



Symbol Meaning

cs Thrust coefficient of alr screw or of wing pair

Cu Circumferential force coefficient of alr screw
or wing pair

Cm Torque coefficent of air screw or wing pair

m Number of air screw blades /428

o = ml/(2%r) Percentage of circumference covered by wing element

A = v/(wR) Coefficent of advance

%u11 = v/ Smallest advance coefficient attained during

fwmaxR) downstroke

A Average advance coefficient during downstroke

kK = ﬁ/-ab Conversion factor for mean downstroke into mean
circumferential force during downstroke

T = t/tab Relative duration, normalized by duration of

downstroke
n = tab/tb - 1 Time factor of duration of acceleration during
downstroke

v Flight velocity

w Effective relative alr speed of a wing element

w Angular velocity

Woax Largest angular velocity from initial acceleration
of rotary motion of downstroke to end of downstroke

w Mean angular velocity of downstroke

o = wmax/tb Angular acceleratlion of downstroke

a Coefficient for induced axial velocity

b Coefficlent for induced tangentlal velecity

G Total weight

GPect Weight of the two pectoral muscles

A Lift or normal force

W Drag

S Thrust

U Circumferential or tangential force

Umax Tangential force at Wnax



Symbol Meaning

U Average tangential force of downstroke
U = Cu/k2 Relative tangential force
H Vertical, upward-directed force component

Forces During Stroke Cycle

If we assume that flight, analyzed on the basis of the
principles presented by Oehme and Kitzler (1974), is determined
by average values of the kinematic parameters of the wing
strokes, and if it is also assumed that the aerodynamic forces
generated durlng this flight are the same in each stroke cycle,
the equilibrium condition can be formulated as follows: over a
complete stroke cycle, the sum of the accelerations due to all
vertical and horizontal forces 1is equal to zero. If we can
exclude all forces from cur power calculation except the vertical
forces 1ift and weight, the thrust-drag problem can then be
ignored. It will now be demonstrated how the "motor power"
of the bird can eventually be derived from the vertical forces
1ift and weight.

Lift, which compensates .or weight, 1s not constant over
a stroke cycle, and instead there 1is periodiec upward and
downward acceleration. Nevertheless, the trajectory of the center
of gravity of the body of the bird deviates so little from a
straight line that the aerodynamic forces generated by the
vertical translations can be neglected, and these mincr motions
treated as vertlcal 1¢ ching and free fall.

Suppose we are glven 1ift durlng downstroke and upstroke /429
as a function of time [H(t)]. Then (Fig. 1):

t

H(t)dt 4 Gtge. - 0

t =ty

tab
f Hyydt +
te0



Lift has a positive sign, and weight a negative sign. The variable
H 1s replaced by a constant average downstroke 1ift ﬁab and a
constant average upstroke 1lift ﬁaup:

tab

t
Tan = (Utar) | HE At Tawr = [U(tges — tan)] | H(Y) dt.
t=0

Sty
Consequently Hautan + Haurltges — tan) = Gge
and -ﬁ; = [Gtce-s - irut.(t ges — tnb)]/tab-
Jsing the relative downstroke time tab/tges = y and the
ratio H /i = x commonly obtained for the average downstroke

_auf’ ab
lift Hyy = |G|/(x + y - yx). The value of x 1s between zero

and one, and the followlng three possibilities will be used:

i{_—n_;t =0 - E = lG“(tab/tgeu)
M = 0,0H,y _}E =2|Gl/(1 + tan/tges)
Haut = Hab Hnb = lGi

We wish to obtain the power of the descending wing from the
average downstroke 1lift. For this purpose, the processes 1n the
wing 1itself must be examined more closely.

Steady-state Rotating Propeller as Model for Downstroke

Since the extended wing sweeps out a circular sector
during the downstroke, a loglcal approach is to utilize the
force and power ¢ -"lculation for an ailr screw. There are, /430
however, differences between a propeller and a pair of flappilng
wings, and the effects of these differences must be kept 1in mind
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Fig. 1. Schematic_of vertlcal forces during stroke cycle as
a functlon of time. tgp = duratlon of downstroke, tges = duration
of total wing stroke /see text).

when the procedure 1s applied to the avian wing. Two assumptions
for the alr screw calculation deserve particular attention:

the envisaged procedure describes a propeller moving with
constant rate of revolutlion and constant flight speed. The
blades of the propeller rotate in the same direction and maintailn
the same posltions relative to one another.

The downstroke motion starts and ends in each stroke cycle.
Moreover, the wing does not rotate with constant angular velocity
during the entire downstroke (Oehme and Kitzler 1974). 1In our
thought experiment, we will neglect the acceleration phase of
the downstroke motion and assume a constznt angular veloclty
for the entire downstroke. If the tangential velocity wR is
large in comparison with the flight velocity v, as in the case
of the airplane propeller, this means large sudden changes 1n
relative air speed for the wing, and enduring effects on flow.
All findings to date on horizontal flight, however, indicate



that the velocity ratio X = v/(wR) 1is no less than one, and
larger in most cases. For A = 1, the effective relative air
speed at the wing tip would be about 1l.U4v, and would otherwise
differ even less from the flight velocity.

In the last part of the upstroke, the wing is folded into
the alr stream (see Oehme 1969b), so that before rotary motion
commences, the alr approaches the wing with a local velocity
equal to the flight speed, which 1s assumed to be constant,
and results in normal circulation around the wing. The rotary
motion of the downstroke commences wit . an acceleration phase.
Because of the slight increase in relative air speed, which is
not abrupt as opposed to the above assumption, we can suppose
that the aerodynamic forces generated on an arbltrary wing
sectlon are determlned at any time during the downstroke by
the parameters valid for the steady-state case (angle of
attack, profile polar curve, effective relative air speed).

At the transition to the upstroke, circulation does not cease
suddenly, but 1ls ilnstead modified by changes in pinion

position followed by lifting and, to some extent, folding of

the inner wing. Clrculation reversals, as observed for
hummingblrds or insects hovering wlth large wing torsilon,

do not occur. The reduced frequencies (Oehme and Kitzler 1975)
calculated for various specles likewlse lead to the same

result: under the conditions of normal, unaccelerated
horizontal flight, unsteady effects can be ignored in the treat-
treatment of wing circulation.

Glauert's (1935) Principle of Alrscrew Calculation and its
Modification

With velocity w, alr approaches an arbltrary blade element
(= wing element) of the propeller at -he angle of advance ¢
(Fig. 2). ¢ and w are determined by tue two velocitles v and



wr, allowing for the induced velocities in the axial (a) and
tangential (b) directions. A normal force, or (following the
technical convention) 1ift A 1s produced at right angles to

W, and a drag W 1s produced parallel to w. The resultant

aerodynamic forces are decomposed into a component in the flight
direction (thrust S) and a component at right angles to it
(tangential force U). The coefficlents Cq (for thrust)l and /431
<y (for tangential force) are obtained from ¢ and the profile

polar curves (coefficients c, and cwp):

€s = Ca €08 P — Cup 8in @ = ¢, (C03 D — ey sin P),
€g = Ca8in P + Cypcos® = cy(sin P + £ cos D).

The "fullness" of the blade element is ¢ = m 1/(2rr). For

m = 2, we obtain o = (1/R)/[(r/R)7] by introducing the dimensionless
quantities 1/R and r/R. The coefficients for the additionsl
veloclties are found from

b/(1 — b) = o F/(4 sin P cos P),
a/(1 4 a) = acyFi(4 sin? @)

with F = (2/7) arccos e ¥ ana r = [m(1 - r/R)1/[2(r/R) sin ®)].

F makes approximate allowance for the number of alrscrew blades.
The degree of advance 1s

A=(r/Rytan @ (1 - b)/(1 + a).

The thrust and torque components are

ltne thrust coefficent should rot be confused with the Lhrust

loading coefficlent, likewise indicated by cg, common in German-
language literature.



R(2Ce/dr) = o(r/R)? (1 — b)? ey (1/cos® @)
= o(r/R) ‘1 + a)* 2% ¢, (1/sin? @)

R{(dCm/dr) = a(r/R)* (1 — b} eu (1/cos?® P)
= a{yRP(1 + a) A, (1/sin? B).

Given the geometry of the
airscrew (chord depth distribution,
pltch, profile), we can calculate
the thrust and torque elements
for various angles & and for
selected blade elements. ¢ and
the pitch of the blade element
determine the angle of attack
and thus the coefficients c, and
cwp fixed in the profile polar
curv=s, With g and c, wWe can
obtain a and b and then the
velocity ratio A associated with
®. For each of these blade
elements, the components of
thrust and torque are plotted
against A and determined for
Fig. 2. Components of particular values of A. These

velociwy and force for yleld the distributions of thrust
wing element ( explanation
in text).

vit+a)

and torque components vs. r/R

for a glven velocity ratic.
Integrating these curves ylelds
the thrust coefficient Cs and the torque coefficient ”“ of the
propeller for these velocity ratios., (For the quantities
customary in German-language literature, we have the relationships
C8 = 0.5 ks, Cm = 0,5 kd. ks 1s called the thrust parameter,

and kd the torque or power parameter.) The thrust and torque

of the propeller are S = Cswpwzﬂu, and M = cmﬂpwzﬂs; the power

10



a
individual radio coordinates, assuming that the propeller blade /432

has the corresponding geometric properties. By analogy with the
thrust coefficient, we can introduce the tangential force

coefficient cu. The tangential force element 1is then

R(aC /ar) = o(r/R)3(1 - »)%c (1/c0s%8) = a(r/R)(L + 2)2A%c (1/sin’e).
Power is obtained from torque and angular velocity. Torque

can also be formulated with the ald of tangential force and 1its
point of application on the airscrew radius (= wing length)

R, the so-called effective radius. If the effective radius

is r,, its radial coordinate is z = rz/R. The power for one of

the two propeller blades is 0.5 P = 0.5 U Rzw, and thus P = U Rzuw
for the airscrew. Since U = Cunpszu and P = Cmnpw3R5, we have

z = Cm/Cu.

is P = My = Cmipm3R5. Also, c¢_ and cp can be given for the

This procedure does the job for typlcal airplane propellers.
For the latter, the velocity ratio is small, while the chord
depth {and thus the proportion of the circumference covered by
the wing elements) is small (c¢f. Fig. 3). The situation is
different for avian wings: large veloclity ratios must be
allowed for, and chord depth becomes very large near the body.
It is evident that the larger the deslired velocity ratio, the
further out the wing will be the point at which the veloclty
ratio which can be achleved with the two parameters a and b
no longer reaches the necessary size. For ¢ = 90°, however,
the expression for A becomes meaningless. This "angle of
advance" must, however, be assumed for the critical case:
from this wing element inward, the alr will approach the wing
effectively only from the front. Conditions will then be
approximately the same as for the airfoll. The additional /433
tangential velocity acting in the plane of rotation would now
have to be replaced by the induced velocity of the airfoil.
The system of egquations for the propeller, however, cannot
represent it. 1Instead of thrust, there will now be drag in

11



Fig. 3. Wing outline and distribution of elements of tangential
force, torque, and thrust for a two-bladed airscrew with veloclty
ratio A = 0.175. Modified from Glauert (1935).

the opposite directlion, While the angle ¢ corresponding to the
desired velocity ratio can be determined for wing elements
lying further out, and the components of thrust, tangential
force, ana torque can be determined from it, they must be
considered given data from the critical wing element on, using

® = 30°. 1In that case, ey = “Cyp® Sy = Ca> and
(1 +8) = —ceupF/d,
R@GCy/dr) = ~o(r/R)(1 + a)*4%exp,

R(ACo/dr) = o(r/R)(1 + ) &c,,
R(de/df) = 0(]'/R)’(l + 8)’2’(‘3.

12



Fig. 4. Distribution of elements of tangential force, torque,

and thrust for a two-bladed airscrew with veloclity ratio

A = 1.5. Chord depth distribution: 1/R = 0.4 for 0.05 < r/R < 0.5;
1/R = 1.6 - (r/R) (1 - r/R) for 0.5 < r/R < 1. Coefficients:

g = 1.0, cyp = 0.08 for 0.05 < r/R < 1. Solid curves: calculation
with supplemental axial and tangential velocities, broken

%urves; calculation without addlitional tangential veloclty

b = 0).

With these approximations, the characteristics of "avian
wing propellers" can be ascertained even at large velocity ratios
(see Fig. 4). A simplification was sought, in order to avoid
having to check along the wing for the critical wing element.

It was important that it was not necessary to determine the
thrust. Through some comparison calculation, it was established
that Cm/Cu = z remains true, Just as in the case of the propeller,
if the tangen*tial factor b 1s neglected. It 1s true that

Cm and Cu now have larger absolute values, but this simpler

way 1s Just as good as long as the thrust coefflicient is not
required (cf. Fig. bU). Determining the effective radius is Just

13
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one problem, however. The second problem 1s to derive the
relationship between downstroke 1ift and tangential force.
As will be shown, the cruclal factor is not the absolute
magnitude of tangential force, but instead the ratio of the
tangential forces for various velocity ratios. This tangent
force ratio also proved to be virtually identical in both
methods, so that the tangential forces abtained by the simplified
calculation could be used in handling this question.

Location of Effective Radius

The problem 1s to determine z as properties of the wing
and the velocity ratlio are varied, for a two-bladed propeller
with chord depth distributions found for avian wings. The
various wings wlll be labelled by a four-part symbol on the

following pattern Aa a 1 (see Table 1 and Fig. 5).

ial

R (dCu/dr)

and R (de/dr) were calculated for all integer and half-integer
r/R between r /R and 0.95, with tan ¢ = x/(r/R), x € {1, 1.5
3, 5, T}. From the resulting six pairs of values for velocity

9 2’

ratio and tangentlial force element or torque element, R(dCu/dr)
and R(de/dr) of the wing element were calculated with the
aid of a quadratic approximation function for all integer
and half-integer A from one through seven. Then the propell
coefficients Cu and Cm were calculated for each of the A

values llsted.

TABLE I. DESIGNATION OF WING PROPERTIES OF
TWO-BLADED AIRSCREW

er /437

Symbol Meaning

Chord depth distribution

16

A
B
C
D
E
F

Theoretical distribution
Streptopelia decaocto
Pica pilca

Anas platyrhynchos

Larus ridibundus

Sturnus vulgaris

see Flg. 3
and

Oehme and
Kitzler
(1975)



Symbol Meaning

Maximum relative chord a lmax/R = 0.25 For B-F, this holds
depth, slenderness b lmax/R = 0.40 for the theoretical
c lmax/R = 0.55 wings of equal area (a)
Body contour o PK/R = 0.05
] rK/R = 0,10
Aerodynamic force c, = 0.5, Cup = 0.03 for (rK/R) < (r/R) < 1
coefficients on wing c, = 1.0, Cup = 0.08 for (rK/R) < (r/R) < 1
elements c, = 0.65 for (r./R) < (r/R) < 0.4
¢, = 0.65-- 0.5[(r/R) - 0.4)] for 0.4 < (r/R)<1
Cup = 0.04 for (r./R) < (r/R) < 1

The result can be summarized as follows (see Figs. 6 and 7).

The curves z (\) of all wings, except for [D( )B( )], can
be made to coinclide with the Abal curve by vertical translation,
as long as deviations of up to 0.5% from the values on this
reference curve are permitted. The location of the effective
radius almost always exhibits the same functional relationship
to the velocity ratio, except for one additive parameter.

The influence of aspect ratio can be neglected. In all
cases, the difference of ¢ and a from b is at most +0.15%.

The variation in z with increasing rK/R can be satlisfactorily
approximated by a simple relation. For rK/R > 0.05, we take
z =z, + O.SPK/R - 0.025. In case R, the resulting value of
z is 0.2%-0.4% too large at A = 1, and 0.1%-0.2% too large
at A = 3. For wing E, the discrepancy at A = 3 1s at most /438
-0.1%. Only for wing D does the discrepancy reach the 1%-1imit
at A = 1, due to the abrupt change in chord depth between
r/R = 0.1 and r/R = 0.05; the approximate values are too small.

17
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Fig. 7. 2z(X) for wing of type ( ) bal for chord depth
distributions A-F.

If, when the coefficients are selected for the wing elements,
the proflle drag-1ift ratios ep = cwp/ca are close enough, the
discrepancies in z (A) will be slight. Thus, the z-curve in
1 coincides sufficiently with that of 2. And the same result

18



is obtained as in 3, when the calculations were performed with
constant cwp = 0,05 and c, = 0.8 in place of c, = 0.65 for the
inner wing element. The coefficient distribution of 1 and 2

as compared with 3 causes an increase in z. In 3, the z-values
are about 93.4% of the values in 1. The coefficients for a
flapping wing are not known. For steady gliding flight, an
elliptical 1ift distribution is not unlikely (Oehme 1971).

While the chord depth distribution is not elliptical, it does
not differ fundamentally from such a distribution, so that there
is something to be saild for the assumption of constant c, over
the length of the wing. Whether this holds for flapping flight
as well is an open question. The case described here, with

c, decreasing toward the wing tip, 1s even more hypotr <5ical.

It was introduced merely as a concelvable alternative to
constant Chs although 1t 1s difficult to imagine how such a

wing could generate the necessary thrust at high velocity ratios.

The effect of a chord depth distribution (B-F) differing
from that of the theoretical wing (A) is not the same in all
cases, but on the whole relatively slight for differences of
the magnitude considered here (Fig. 5). The largest differences
as compared with A are exhibited by E(= +3%) and F (= -3%).

For certain chord depth distribution types, the values of
z can be adequately corrected by using the curves in Filg. 7.

Hence, in calculating the effective radius valid for a
particular velocity ratio, one can start from the values for
wing Abal as a standard, and correct these values in accordance
with the relevant differences (chord depth distribution, body
contour, other ooefficients)2.

2The standard values z (A) will be supplied by the authors
on request.

19



Convertin verage Downstroke Lift to Tangentlal Forec

In a previous discussion, only the pitch of the screw
Jet was neglected in calculating the effective radius. Otherwise,
the calculations were made as for a propeller. For the latter,
which is there just to generate forward thrust, the tangential
force 1s a necessary evil, and the smaller the tangential force
in comparison with the thrust generated, the more economically
the propeller operates. The tangential forces produced on the
blades of an airscrew cancel out, so that they do not have any
effect on the alrcraft.

On the other hand, in the case of beating wings "rotating"
in opposite directions, the tangential forces produced upon
them will have a vertical force component, 1lift, which will
depend on wing position. If the tangentilal forces on each of
the two wings are the same as on the two propeller blades /439
(given the same wing geometry and identical kinematic conditions),
the 1ift generated during the downstroke can be obtained from
the tangential force in the propeller model. This presumes
that the constantly changing relative position of the wings
does not cause any interference. If the beating angles are
not too large, thls hypothesis wlll be valid. However, if
the wings come close to one another at the beginning and at
the end of the downstroke, circulation around the wing will be
modified at those points. Hence, the tangential forces, and
thus tne 11ft, derive from the propeller model will no longer
apply exactly. Consequently, in the sequel, such results will
have only limited validity and are utilized primarily for
comparison, when the extreme wing angles ¢0 or ¢u excede +65°
or -65° respectively. This restriction does not play any
role in real cases as will be seen later.

First let us consider the 1ift yleld for the unaccelerated
rotary motion of the wing assumed so far. Between times tl = 0
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and t2 the wing will traverse the angle ¢1 - ¢, with angular

veloclity w. ~Suppose alsdoc that tangential force does not change
during this time (Fig. 8). 1In that case, the 1lift at any time

is H = U cos ¢, where ¢ is the wing angle at time ¢ (tl =0c<t <t,).
Also, ¢ = ¢, - wt, and consequently wt, = ¢; - ¢, (angle in

radians). The change in momentum generated by the variable

1ift 1s

4ap = } U eos(p, — ot) dt = U (sing; — singy)/o»
T

= Uty (sin ¢, — sing)l(; — 92

since w = (¢1 - ¢2)/t2. The average 1ift H = U (sin ¢, - sin ¢5)/
(¢l - ¢2)'

Ordinarily, at the beginning
of the downstroke, the wing will
be accelerated uniformly from
w=0tows= Wnax during the time
t=0¢tots= tb’ while the wing
traverses the angle ¢0 - ¢b.
Thereupon it covers the angle
¢b - ¢u with constant angular
veloclity Weax up to the time
typ+ The ratio of average ALY
tangential force to average
1ift 1s then

Fig. 8. Principle for
calculating 1lift from
tangential force (see text).

tsb

t‘b
Tl = [ U d H(t) dt.
U/Ha ‘-j;l(t) tlc‘!o (t)

The integral is evaluated as above for the time interval
tab - tb and by approximatic 1 for the interval between

t = 0Qand t = tb.
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Because of the relatlon t , = t, (n + 1), Wpax ™

(¢b - q)u)/(ta.b - tb\ and ¢b = ¢0 - 0.5 ¢max tb’ we obtailn
ty = (¢0 - @u)/[wmax (n + 0.5)]. Also, the constant angular
acceleration 1s o = “max/tb’ At time t, (0 < ty < tb), the
angular velocity is w,. Therefore, t, = wi/a = “1tb/wmax’ At
an angular velocity of Wy the velocity ratio 1is Ai = v/(wiR).
" v/(AiR). Since Wrax = v/(AminR), we have
ti = Amintb/ki‘ Dividing by tab = tb (n + 1) yields the
relative times T, = t,/t , = A, /[A, (n + 1)]. At time t
the wing angle is ¢, = (¢, - ¢ - w,t,)/2 + §. At

ti = Amintb/Ai’ we find ¢i = 0,5 (¢0 - ¢u) {1 -1 min/[)\1
(n + 0.5)1} + §. Thus, T, and ¢, can be calculated during
acceleration for gilven Amin and n, for arbitrarlly many

veloclty ratios A

Therefore, w

1,

1‘

The average tangential force (U) and the average downstroke
1ift (ﬁab) are obtained as follows.,

— 1
U=[U@d: numerically for 0 <t g Ty,

=0 =

in closed form for Tb gt

f U4 = Uaas(l = 50) = Unax- nfn + 1);
2o

- 3
Hap =¢'[0H(T)dt numerically for 0 5 T s Tb
vith Hi = Ui cos ¢y,

in closed form for T, $TS1

f H(@) dr = [Umax (singy — singy)/(go — gu)] - n/(n + 1)

f-fb

The conversion factor for 1lift into tangential force 1is

k(g - ¢,5 83 n5 A, ) = 0/R

min ab’
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Instead of calculating with the tangential forces of
specific wings at specific angular veloclties, one can use
the tangential force coefficient Cu. U= Cunpw2Ru. With
w = v/AR, we obtain U = Cuwpszz/AQ. Since v is being assumed ,
constant, A varies only when w does. Hence, U = (Cu - const)/\".
The relative tangentilal force U%* is substituted for U/const.

2
% = & n &
For arbitrary Ai, we have U cui/x and H U1 cos ¢1'

1 1°? i

The "tangential force" for T = O(UO), l.e. 9g» can be
obatained with sufficient accuracy from graphs of the function
U%(1) by extrapolation to large values of A.

U% was determined for all integer and half-integer values
of A from one to seven for the same wings as in the z-calculation.
The value of U® at A = 2 was taken to be unity and all other
U# yalues expressed in this unit (Fig. 9).

/U4l
- 92-5p2 -ca2 @-s0r-03
U.'?‘ He ool te? A-opr-te3
o Q-cbt @ -oa2b31-bp3-cat-cadchl-cPp3
| 7 -bht-cut -cd3 v -op2-dul
12 o eaPi-bpy- - -b)2-sa?
O-ant-apd-

— A
R TR S
r 2 3 H 5 §—* 7

Fig. 9. Tangential force as a function of A for the wing A
(see text).

The deviations from wing Abal are small throughout. Changes
in chord depth distribution on the scale utilized here (B-F)
have virtually no effect, while changes in the aerodynamic
coefficients and in the aspect ratio have detectable effects,
as do, on a smaller scale, changes in the position of the body
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contour. The values of k were calculated for the wing Abal at
Amin = 2, and for the flapping angles (¢O - ¢u) 60°, 70°, 80°,...,
140° with angles of asymmetry (8) -10°, -5°, 0°, 5°, 10° and

with the time factors (n) 2, 3, 4, 5, 10, w3..

For the same wing, and for the wings AcB2 and Aaa3, whose
U-curves deviated most from that of Abal (Fig. 9), these k-values
were also determined for Amin = ] and Amin = 3 for extreme
conditions (maxir'um flapping amplitude, maximum positive angle
of asymmetry, m2ximum relative acceleration time) (Table 2).

The error generated in using the standard values 1s small,

even when the initial kinematic values are unfavorable, and

does not exceed the 1%-1imit for what experience has shown to

be normal values (¢0 - ¢, s 125°, =5° ¢ 6 <+5°,and 2 3).

TABLE II. DIFFERENCE BETWEEN
k AND STANDARD VALUE (Abal for Agin = 2)
AT ¢O - ¢u = 1u0°’ 6 = +10°’ ns= 2.

wing — error (%) .

Abal 1 —1.27
2 0
8 +0.14
Aaald 1 -—1.12
2 +0.,09
8 +0.21
Acf2 —1.74

-0,2
—0.01

-~

3These tabulated standard values are avallable from the authors
on request.
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Influence of Initial Acceleration in Downstroke on Location /442
of Effective Radius

By analogy with the average tangential force, we can
calculate the average power:

P- iP(t) dz.
2=l

Here tooa relative power can be introduced. P = Cmnpw3n5
implies Pi* = Cmi/li3. The average angular velocity of the
downstroke o = (g - )/t = A, (n + 0.5)/(n + 1) corresponds
the average velocity ratio X= v/uwR A4, (0 + 1)/(n + 0.5).

The effective radius is obtained from the relation presented
earlier (see p. 11) z = P/(DwR), or, using the relative values,
z = PeY /0%,

For n = 2, the difference between the resulting value of
z associated with X and the value calculated at constant angular
velocity (n » =) is +2.84% at X = 1.2 (Amin = 1); +0.94% at
A =2.b (2, =2)and +0.46% at X = 3.6 (A_, = 3). The larger
n 1s, the less significant the difference is, so that for time
factors n 2 3, even for velocity ratios X =1, the 2%-limit is
not exceeded.

Execution of Power Calculation —-- Discussion of Method

The average power of the pair of wings during the downstroke
was Pab = 0 o Rz by analogy with the power of the propeller
P=UwRz. U is determined by the average downstroke 1lift
gab
Hab
equation are quantities not measured directly, but instead
derived from measured data (see Fig. 10). All are average

and the conversion factor k: U = . .p K+ Hence, P =
a ab

w Rzk. With one exception, the factors contained in the
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values, so that the effects of their errors on the final result
must be taken into account. This is accomplished by means of
the modifications presented below.

o

Fig. 10. Connections between measured values and resul* .f
power calculation.
[ indices: ad = downstroke; ges = overall]

For each flight analyazed, three calculations were made for /443
a fixed ratio ﬁauf/ﬁab: one for the average value and one for
the maximum and minimum possible values. In detall:

Average downstroke 1ift ﬁab: obtained from the weight
G and in two cases from the relative downstroke time tab/tges'
For G, it was not the average error, but the largest and smallest
values of the series of measurements which was employed. The
error interval of the relative downstroke time is obtained from

the average errors of tab and tges‘
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mex wmin max
[(o)  Gonltem) ]»m;) )
min max min

Wing length R: if it may be assuwmed that there 1s a
correlation between G and R for the species involved, which
might also be divided by sexu, the values of R corresponding
to the largest and smallest G on the basis of the correlation
were used. When a correlation was unlikely, the average was
always employed, i.e. R had no maximum or minimum.

Average angular velccity of downstroke w: 1s derived from
the flapping angle ¢0 - ¢u and the downstroke time tab:
w = (g = 0,) ° 7/(180 - t,p) With angles in © and time
in seconds. The error interval is obtained from the average
errors of the stroke angle and the downstroke time.

mex - max min max
G - [(% —@a) s (tav) ] (@) -
min min max min

Positlon of effective radius z: determined from standard
curve with velocity ratio X, corrected for wing shape, and then
converted to final form, using the position of the body contour.

a) Downstroke velocity ratio X = v/{(wR):

max mio _ max max min
G) -» [(\') J@) L(R) (1) = (2yon1)
min max min min max min

{vorl. = provisionall

uThis only makes sense when the sexes can be clearly identifiled,
even i1n flight.
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b) Positionof body contour rK/R: the error interval 1s obtained
from the average errors of ry and R.

amx max max max
G) - [(3“1!.) .(rx/R) ] - (2)
min min min min

The factor k for converting average downstroke 1lift into
tangential force: determined with the aid of the time factor
n, the stroke angle ¢0 - Qu, and the angle 8 of asymmetry.
The values of k were obtained by linear interpolation in ail
three tabulated variables.

a) Time factor n = (tab/tb) - 1. The average errors of tib
and tb determine the error interval of n.

max min min max
©) -»[(t.../t..) ]—»(n) -»[m
min max max mn

b) Stroke angle ¢g = 9,-
(G)mf»[(%—w.o'"]» [m"“l
min min min

¢) Angle of asymmetry §.

mayx max max
©G) | @ ]»lm)il

mi in

The relationships shown in a) and c¢) apply for the cases JALL]
2<ngb5and -5° g 6§ g +5° For § < -5° and n < 5, the situation
is partially reversed. Nothing can be changed via n, however,
because the smallest n 1s associated with the minimum of (tab/t )

_ ges
and the maximum of w. On the other hand, 8§ is arbitrary and the
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values can be selected so that they result in the minimum
or maximum k.

As explained, z and k deviate from the standard values,

depending on A. While using X always mekes z too small, k

is too large at small values of A. The errors cancel to scme
extent. The prcoduct kz 1s always a blt too small, at worst by
about 2%, but usually by less than 1%. At any rate, using the
standard values does not result in a power whlch 1s too large,
so that a correction can be omitted. A sufficiently close
approximation for velocity ratios between 1 and 1.5 is raising
the power found with the aid of the standard values by 1%.

The sources of the initial data vary. While the kinematic
parameters characterize a specific flight of an individual bird,
the morphological parameters derived from series measurements
are theoretically characteristics of the (abstract) ideal
representative of the species or of a population of the speciles
or of a segment of 1it, but in reality are approximations
obtained from random samples.. Therefore, it is best to include,
for the time belng, the entire range of variation of weight
and, if appropriate, wing length in the calculation. The true
value for the flight model can then be relatively confidently
expected to lie in the interval between the maximum and minimum
downstroke powers. The procedure does not supply a precise
value for a particular individual, but instead a range of values
for the species concerned. The width of the interval will be
det:rmined by the accuracy of the initial values, and the
significance of the results must be discussed from this viewpoint.
Depending on the quality of the primary data, one may obtain only
an order-of-magnhitude estimate of downstroke power or a precilse
analysis of e.g. the relationship between flight veloclty and
power or the flight powers of males and females.
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This all holds for our time model of the downstroke: it
begins with an acceleration phase, and once the maximum angular
velocity has been attained, it is maintained until the end
of the downstradke. Downstrokes with varying angular velocity and
consequently several acceleration phases would have to be treated
individually, and the tabulated conversion factors k would not
be applicable. If the ¢(t) curve of such a downstroke 1is replaced
by a different one in which all the intervals of acceleration
are combined into a single initial acceleration, while the
stroke angle and the downstroke time remain unchanged, substitute
curves ¢(t) or w(t) are obtained, for which the time factor n
is then given as well (see Oehme and Kitzler 1974). We will
use two examples to show how the application of the method
of calculation to such simplified kinematic conditions affects
the two factors z and k (Fig. 11). Case 1: for the substitutez
Surve, ¢g = ¢, = 140°, § = 0, n = 2, Amin = 1.5 at Wroax = 20/sec, /U45
A = 1.8. Two quite different sequences lead to these substitute
values. The separate accelerations combined into a single
initial acceleration vary in magnitude and sign. Case 2: for
the substitute curze, 09 ~ 0, = 140°, § = 0, n = 2, xmin =1
at w .. = 20/sec, A = 1,2, The original three accelerations
are equal in magnitude and sign, but occur at different times.
Moreover, this is an extreme case in which the rotation of the
wing stops completely, whereupon the wing is reaccelerated up
to its old angular velocity. The original downstroke was VALY
calculated 1n sections, the relative values of tangential force,
average downstroke 1lift, anc¢ average downstroke power obtained
by summing over the downstroke time, and the factors k and z
calculated from these figures. Compared to the standard values
(relative to 1), the following differences resulted (Table 3).
While z 1s the same in Case 2 for the original and the substitute
curves, the simplification in Case 1 resvlts in a value which
1s too small. The k-values of the originals naturally depend
on the position of the accelerations within the downstroke. The
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Fig. 11. Tangential force, 1lift, and power as functions of time
for different downstrokes with several periods of acceleration.
Solid curves: original downstroke. Broken curves: Substituted

downstroke with pure initial acceleration. Wing Abal. (See
text for explanation).

complete stoppageof rotation followed by reacceleration (Case 2)
has a much greater effect than changes in angular velccity without
complete stoppage (Case 1). The calculation with the values of

k and z corresponding to the substitute curve would yield powers
which were too small in Case 1, btut too large in Case 2,
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TABLE III. DIFFERENCES IN FACTORS k AND z FOR THE
ORIGINAL AND SUBSTITUTE CURVES ¢(t) FROM THE
STANDARD VALUES (in %)

Case 1a 1b 2a 2b 2e
k Original +1.60 —0.61 —2.98 —17.05 —6.47
Substitute 0,56 —0,53
2 Original +241 +241 +2.84 +284 +284
Substitute +1.28 +2.81

particularly when the multiple accelerations occur near the
angle bisector of the stroke angle. A single irregular wing-
stroke, used in obtaining the initial kinematic data via the
substitute curve, would hardly f-1sify the result. However,

if "irregular" wing beats are the norm, the calculation will
supply only an approximation, and it will have to be estimated
whether the result is too large or too small. Nevertheles-,
the differences will usually be smaller than those in the
examples, when the stroke angle is smaller and the time

factor larger. If the downstrokes are so irregular that n < 2
for the substitute curve, the calculations will no longer furnish
useful results. However, it 1s quite unlikely that such a case
would represent unaccelerated horizontal flight.

Finally, we wish to discuss once more the principles of the
procedure. The induced tangential velocity of the propeller
was neglected (b = 0), since it has practically no effect on
the location of the point of application of the total tangential
force for the given velocity ratio, and since even the ratio
of the tangentlal forces does not change at different velococity
ratios. However, to a specific tangential force must correspond
a specific tangential velocity increment or the vertical velocity
along the inner parts of the wing corresponding to the downwash.
Therefore, 1f one desires to calculate the tangential force for
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a given wing with specified coefficients, assuming this force
to be equal to that on the propeller rotating through the

entire circular screw surface, the factor b can be hardly be
ignored and an expression for - the induced velocity along the

~
=
=
—

inner wing must be introduced (cf. Fig. 3). As the two wings

traverse the stroke angle, the additional velocity has a
component directed vertically downward and dependent on wing
position. This corresponds to the downstroke 1ift, which varies
in the same way, and a mean vertical induced velocity then
corresponds to the average downstroke 1lift. If one wishes to
draw inferences about tangential force, and eventually about
power, from the momentun of the "flapping wing jet" assigned to
this velocity, the stroce-angle-dependent contribution to angular
momentum and the time of the downstroke during the stroke must
not be ingnored. However, any experiment designed in this
fashion presumes knowledge of values which are usually not
available. The approximation method developed here avolds these
difficulties, by permitting the use of any tangential force
determined eventually by the weight of the animal, and presuming
the existénce of the induced velocities corresponding to it,
without representing them precisely. Thus, the second force
component generated, namely thrust, is not represented. The
induced drag on the +ing, determined by its aspect ratio, likewise
does not appear. Since lower induced drag means greater thrust
yileld, theory would lead one to anticipate 2 relationship
between calculated powers and flight velocities. When the same
power is caleculated for two equally heavy birds with equal
surface locad, the one with the slenderer wing must be faster,
assuming that the two birds have the same body drag and the same
wing profiles. Pure examples of this case will not occur in
practice, without coming up against the unl own force parameters
again. However, more extensive comparisons would have to
confirm that slow-flying narrow-winged birds have relatively

the smallest powers, and fast-flying broad-winded birds the



relatively greatest ones. If this is the way that the effect

of any drag reduction due to free primaries (see Oehme and Kitzler
1975) were to be discovered, it would require extremely precise
measurements of velocity, because of the smallness of the effect.
Consequently, corroberation cannot be expected. For the power
calculation itself, the special pinion structure has no

influence.

One starting point in the derivation of the effective
radius and the conversion factor for 1ift was the assumption
of constant force parameters on the wing elements during the
downstroke. A periodic variation 1n angle of attack, as
assumed by von Holst (1943) and von Holst and Kuchemann (1941),
would also induce such variations in the force parameters,
particularly in c,e Tangential force would then depend not
only on angular velocity, tut also on wing position. This would
require further information on the magnitude of the angular
changes and thus of the changes in the cofficients, which would
again presume precise profile polar curves for the individual
wing elements. It 1is hardly possible to make sufficlently
precise measurements of angle on various wing sections when
the bird is flying freely. This has been done for a trained
bird flying in a wind tunnel (Bilo 1971), but these studiles
have likewlse shown that 1s very difficult to monitor a certaln
period of time over several stroke cycles and to separate wing
strokes altered by control movements from "ordinary" ones of
powered flight. The theory of von Holst states that the effective
angle of attack, increasing from the root to the tip of the wing,
reaches it: maximum as the wing passes through the horizontal,
and has an 1dentlcal smaller value at the beginning and end
of the downstroke at all points on the wing. This means roughly
a reversal of the cofficlient distribution 3 in the middle of
the downstroke. Thus, z gruws form the beginning of the down-
stroke to the middle of the downstroke, and then decreases agailn.
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Converted to a constant average downstroke 1lift, z becomes
appreciably greater. For the same case, k becomes somewhat
smaller, because the maximum of tangential force coincides

with the horizontal wing position (¢ = 0, cos ¢ = 1). On the
whole, the result l1s a downstroke power greater than 1ln the
case of constant coefficients. As far as can be Judged by

time- lens photographs, the pinion of the wing 1is prcnated
during the acceleration phase of the downstroke motion, and then
remains 1n this position during the rest of the downstroke.

Thls would be compatible with the hypothesls of more or less
constant coefficients on the wing elements: at the beginning
of the downstroke (w = 0), the entire wing is parallel to the
apprcaching alrstream. With increasing angular velocity, the
airstream approaches from further and further beneath the wing,
and the further the wing section lies from the shoulder joint,
the greater the difference between the relative air direction
and the longitudinal axis of the blrd. Thus, the twisting car
preserve the original angle of attack and keep the coefficlients,
particularly Cys roughly constant.

For a typlcal downstroke (i.e. with purely initial
acceleration), all calculations tended to yield powers which were
too small. This is in fact an advantage if we are trying to
demonstrate just how great the fllght power 1s. The only
parameter which 1s not measured, but instead assigned, 1s the
ratlo of upstroke 1lift to downstroke lift. Any value between
= 0 and H H . is theoretically

auf auf = “ab
possible. At this point, we considered only the possibillity

the two extremes H

ﬁauf = O.Sﬁab. If every concrete case can be classified into
one of the two intervals, the upper and lower powers would be
obtained. The only difficulty 1s that forces in this case must
be directly estimated from morphological features. However,

a rule can be derived from a close examination of the upstroke
using kinematographic recording. In many small birds, the wing

35



is largely folded up durling the upstroke, They can readily be
assligned to the category 0 < Hauf < O.SHab. In large birds,
the rule is that the pinion 1s more or less foldedand bent
toward the inner part of the wing during the upstroke, while
the inner half remains unfolded and acts as a lift-generating
surface: O.SHab < Hauf < Hab'
not reached, because the lift-generating surface is smaller

than in the downstroke, and such a large vertical force component
could then only be achieved by relatively large angle of attack,

The upper limit 1s probably

producing a great increase in reverse thrust, and eventually the
latter could no longer overcome by the thrust generated during
the downstroke.

With the present form of the calculating method, the power
resulting from the action of the wing on the mass of air which
it moves during the downstroke can be obtained. The power /449
required to overcome the inertia of the wing from the
beginning of the downstroke 1is ignored. The calculation aiso
ignores the muscular work performed during the upstroke as well
as energy released in other organs. Taking the calculated power
simply as fllght power, l.e. converting it to the entire stroke
cycle has to yleld lower values than would a total power
determination on metabollc and physiological principles.

Part II: Specific Power Capacity ~f Pectoral Muscles of
Columbia Livlia (pigeopn) and Streptopelia Decaocto in
Horizontal Flight

Material

Our method of calculation was applied to two species whose
horizontal flight is pure powered flight, and is thus not
interrupted by gliding or sailing phases. A population of wild
city doves at the edge of the Berlin Zoo and the large
population of Turkish doves inhabliting the entire Zoo area
provided morphological and kinematic data.
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The weight, the weight of the two pectoral muscles, the length
of the wing, and the position of the body contour were measured
on freshly killed adult animals (see Oehme and Kitzler 1975).

In both specles, the sexes can generally be distinguished in
flight, so that no separate analysls of males and females was
carried out. The subjects were 17 pigeons (9 males, 8 females)
and 23 Turkish doves (11 males, 12 females). In both species
there was a positive correlation between total welght and weight
of the pectorals (error probability 5%), while one existed
between total weight and wing length only in the Turkish dove.
The equations for the regression lines are G = 0,0285 + 0.089 G
and R = 0.167 + 0.4 G for Streptopelia ard Gpect = 0.021 + 0.1322 G
for Columba (G and Gpect in kg, R in m). In both specles, the

edge of the body contour is at r,/R = ¢.075 % 0.001. The following
values, assocliated with the smallest, average, and largest

G, were obtained (Tatle -). The relative pectoral weight is also
listed.

pect

TABLE IV. MORPHOLOGICAL PARAMETERS OF THE
TWO SPECIES OF DOVE

G R rx/R Gpeat Gpeat/G
‘kgdeq) ™ (kg a)
Columba liria 0.250 0316 0.074 0.053 0,212
0,883 0318 3 0.064 0.192
0,368 0,316 0,076 0.071 0,183
Streplopelia decaocto 0.159 0,231 0,074 0,043 0.270
0,200 0,247 0,073 0.04¢ 0,280
0231 0,259 0.076 0.049 o2

The film materlal assemoled for both specles made it
possible to calculate nine pigeon and seven Turkish dove
flights. The method by which the kinematic parameters were
derived has already been described (Oehme and Kitzler 1974).
The downstrokes were all of the ordinary type, with only one
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period of angular acceleration. The flight velocity v could

only be determined roughly by measuring the time between known
terrain points, allowing for the direction and the strength ot

the wind. Experiments with models have demonstrated that such

a nrocedure involves an uncertainty of 10% on both sides. This
was taken to be the error interval for the velocities of the birds.

Results and Discussion /50

The values obtained for power -~ speclific power of the
pectorals and average relative power -- are depicted in Fig. 12.
They were calculated for the two extreme cases gauf = O.SRab
and Hauf = Hab’ the upstroxe (see Fig. 13) indicating that the
first equation is closer to the real situation. During the
upstroke, the Turkish dove folds its wings more than does the
plgeon. so that for this species, the average upstroke 1lift
is somewhat smaller, which would increase the downstrok
The pigeon was assumed to have the chord depth distribution
0. the theoretical wing, while the standard values for z were
raised by 1% for the Turkish dove (wing form B)S.

We will first discuss relative downstroke power converted
to the stroke cycle, because it opens to nossitility of a
comparison with metabolic-physiological findings. The expression
(?ab . tab/tges)/G would exnress the average power, —elative to
body weight, if it were derived only from the pectoral power during
the downstroke. Total energy consumption of the olrd per time
and weight must be higher. Thermal energy per unit of time
(kcal/h) is converted to mechanical power (HP) for an efficliency

of 25%. Pearson (1964) and Lefebvre (1964) determined the

A complete table with the direct (stroke angle, angle of
asymmetry, flight speed) and derived (relative downstroke time,
angular velocity, velocity ratic, time factor) purameters, the
two factors z and k, and the resulting powers is available from
the authors upon request.
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Fig. 12. Specific power of the pectoral muscles (bottom) und

the downstroke power (top) converted to the entire stroke cycle

of nine pigeons (lefi) and seven Turkish doves (right). Solid
lines: Calculations with Rausr = 0.5H;,; broken lines: calculations
with Hayr = Hap. Clircles deslignate average values.

total energy consumption of flying pidgzons. If energy
production at rest (standard metabolic rate, resting metaboliec
rate) 1s known the average energy requiremert of the pectorals
in flight 1is equal to the total energy consumption minus the
resting metabolic rate and minus the increased power consumption
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of muscles other than the pectorals (wing-lifting muscles,
heart, respiratory musculature, etc.). The increased power
consumption due to muscles other than the pectorals was assumed
to be three times as great as the resting metabolic rate. This
is based on the following highly simplified derivation. Zeuthen
(1942) found the power consumption of flying pigeons to be
between and 10 and 27 times the resting metabolic rate, Pearson
(1964) found it to be 23 times the latter, and Lefebvre (1954)
10 times the resting metabolic rate. We will use a figure of

18 times the resting metabolic rate and estimate the power
consumption during flight of organs not directly participating
in the work of flight to be twice the resting metabolic rate.
The remaining 16 times the resting metabolic rate must be
divided between the pectorals and the other flight muscles.

For the latter, we substitute the most important wing-lifting
muscle, the M. supracoracoldeus. In the pigeon, thls muscle /452
weighs about 1/7 as much as the pectoral. Assuming the same
average metabolic intensity in both muscles, we assign 14

times the resting metabolic rate to the two pectorals and twice
the resting me.abolic rate to the wing-lifting muscles. Therefore,
the average power consumption of the pectorals is equal to

the total power consumption minus four times the resting metabolic
rate. The amount subtracted may be too large, but it is

a safeguard against finding too large a calori: equivalent

as a confirmation of mechanical powers which are too large.

We emphasize once more that this scheme serves only for
estimating the order of magnitude, since it 1is more likely

that the supracoracoideus does not have the same rate of power
consumption (ef. George and Berger 1966) and is active only in
the first part of the upstroke, in which the inner part of the
wing is raised into position for the next downstroke, and the
adductors bend the pinion joint, while the pectoral must already
perform holding work, while the abductors bring the pinion into
the starting position for the next downstroke (cf. Oehme 1968b).
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Fig. 13. Wing position and wing area in downstroke and upstroke
of Columbia livia (left, veiw from below) and Streptopelia
decaocto (right, view from rear). Derived from superimposed
time-lens photographs, the numbers are the time in msec from
start of downstroke.

TABLE V. POWER CONSUMPTION AND AVERAGE
RELATIVE PECTORAL POWER OF COLUMBIA LIVIA

Tot. power cons. Rest. met. TPC-4RMR (P toteu

e /n EakE /AR ve/n  HE/ke
112(nax at 43 (o) 9.8 0.038
13mjs < v < 4ms) 5,25 (d) 91 0.036
© ) 1 (b) 84 0.033
84(5°% of max at 43 66.8 0.026
13mfs < v < 14ms) 525 63 0.025
1 56 0.022
18(max at 13 546 ’ 0.022
ve = 17,9 m/s) 5.25 50.8 0.020
®) . 9 438 0.017
#8(av, at 43 4038 0.016
112mfs < vg < 188 m/s) 525 37 0.015
7 30 0,012

In Table 5, the results for 4 different total energy consumption
figures are listed with three different resting metabolic rates

in each case. The latter also differ by quite a bit. The values

derived from t-.e findings of Pearson agree well with those for
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ﬁauf = O.Sﬁab (Fig. 12), ifone starts from a smaller total value
and correspondingly smaller speeds, and even the rate of
112 kcal/kg/h given as an upper bound by Pearson leads to
satisfactory agreement with the relative downstroke powers
calculated for moderate and high speeds. However, they
conflict consplcuously with Lefebvre's findings. For his upper
bound, there are, when the velocity is ignored, just barely
some correspondences under the assumption that ﬁauf = Hab’ For
his average value, on the other hand, there is no longer any
agreement for this case, even if the powers which are about

7% lower with a different coefficient distribution (3) are used.
In order to obtaln such low values of (Fab . tab/tgeﬁ)/G’ one
would have to make the unrealistic hypothesis that E . > Hab'
A number of objections to Lefebvre's analyses must nc be
lgnored. Determination of energy consumption by mear of COp /453
production with aid of isctopically labelled water (D,:, H2018)
yields satisfactory results with laboratory monitoring of the
experimentals animals. This constant observation was not
present as the doves in the experiment made the roughly 500 km
overland flight. For some birds, interruption of the flight,
and food and water intake were conceded. However, this cannot
be ruled out for all the birds analyzed. The velocity over the
ground (vg) was deduced from the time between departure and
arrival and the distance between start and destination. No
information on wind conditions was provided for the many hours
of flight. It is not at all difficult to acquire a much higher
energy consumption rate (relative to pure flight time) by
assuming just a moderate head wind and allowing the birds
pauses on the ground for roughly 1 hour. The conjecture that
undetected influences affected the experimental animals 1is
strengthened by some of the data reported: when two bilrds

fly at almost the same "speed" but the specific energy
consumption rate of one is about 1.8 times as great as that

of the other, or when the specific energy consumption rates of
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two birds are the same, but the "speeds" differ by a factor

of 1.7, this can hardly be explained as randem fluctuation.

For these reasons, Lefebvre's results are not considered
evidence against the computing method employed. This view can
be supported by other findings. Tucker (1968a, b; 1969), in
studies on parakeets (Melopsittacus undulatus) and gulls

(Larus atricilla) flying in a wind tunnel, determined energy
consumption rates which make the magnitudes of our calculated
results quite believable (see Table 6). In calculating

(Fab . tab/tges)/G, only three times the resting metabolic rate
was subtracted from the total consumption, because the
supracoracoideus weighed only 1/10-1/12 as much as the pectoral.
The values at comparable speeds were distinctly higher for

the parakeet than for the pigeon. Probably it generates less Lﬂiﬂ
1lift in the upstroke (ﬁauf < O.SEab). Since no data on the
flight motion is available, we cannot make even an estimate.
However, the size of the convertedrelative downstroke power
speaks for itself and even suggests that the total rate of

112 kcal/kg/h, which Pearson considered an upper bound for

the pigeon, may be normal at that speed. The calculated
values would be clearly too small, unless ﬁauf O.Sﬁab. For
the gull, the values are low as compared with those for the
pigeon. An estimate with very approximate parameters for the
comparable-sized lake gull (Larus ridibundus) leads to good
agreement. For two flights, with

tan/tges = 0.35(0.30), g0 —gu = T0°(70°), & =~ 0°(19),
na23), v=9ms(13mfs), o= 815 (11,7)s), 4= 24(24),

R = 0.46 mand G =~ 0.3 kg, the resultswere(?ab © b/t o )/ =

- - £€8
0.013 HP/kg (0.018 HP/kg) for H, o = 0.5H , and 0.009 HP/kg
(0.012 HP/kg) for H = ﬁa

, 0 [t}
auf b The possibility Hauf > O.)Hab
can be entirely eliminated. It can therefore be concluded that

the assumption ﬁa = 0.50 ., 1s consistant with actual conditions

uf ab

43



for the medium-sized birds dealt with here, and that the
assumption made in deriving the procedure that the coefficlents
remain constant is nearly correct.

TABLE VI. POWER CONSUMPTION AND AVERAGE RELATIVE PECTORAL
POWER (according to Tucker 1968a, b; 19€9)

Tot. power cons. Rest. met.TPC - (Pt - tan/tses)/G
(TP9) rate (RMR) 3RMR
keal 7kg/h kealkg/h kal/ kg/h  HP/kg
105 (v = 9,7 ms) 8.2 80,4 0.032
33 122 (v=1L1ms) 82 914 0.039
4 § 3 161 (v=128ms) 8.2 1364 0.054
=% 5(min at 14 368 0015
3 85m/s < v <123 ms)
% ‘S(max at a4 468 0.019
AR 83m/s < v <12 5m’s)

Returning to the original subject of the investigation,
it can now be considered certain that the specific power output
of the pectoral muscles of the two specles of dove under
continuous rhythmic load is 10 to 20 times the specific output
of mammalian muscles. This does not include the chiroptera,
because aerodynamic features similar to those of powered
avian flight suggest that the output of the musculature 1is
correspondingly high. Specific muscular output between 0.26
and 0.60 HP/kg -- that is 190 W/kg to 440 W/kg, which after a
conversion with n = 0.25, about 660 kcal/kg/h to 1500 kcal/kg/h --
must be reflected in physiological and morphological features
of this high-power muscle. George and Berger (1966) explain
what makes this unique vertebrate muscle capable of such high
metabolic and energy-utilization rates: a rich supply of blood /455
vessels, extraordinary development of the enzyme apparatus
necessary for respiratory-chain phosphory.ation, and the burning
of fat as the most energy-rich nutrient, another factor belng
that in the plgeon -- and presumably for the Turkish dove as
well -- the entire muscle 1s not in:iaction during continuous
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exerticn, but only the red muscle fibers (which are, more
numerous), while the less numercous white fibers can supply
transient power peaks. Lately, doubts have been expressed
regarding this view (Lee 1971), and it 1s therefore a good idea
to devote renewed attention to the relationships between
mechanical power and cytophysiological and cytomorphological
features. For one side of the problem, ~ the determination

of high power, the method presented here will be quite useful
when applied to other species, and can be made even more
informative by refining the measuring techniques or allowing for
the mass of the wing (calculating the moment of inertia).
Another thing which should be checked is whether a particular
species might be better represented in comprehensive series

of measurements by a "standardized" individual with the parameters
of the averages and their average errors. Also worth
investigating is the relationship between energy utilization
rate and flight speed found by Tucker (1968a, bL) for the
parakeet. This cannot yet be done with the results presented
here, because velocity was not determined accurately enough,
although a higher speed = higher power trend can be recognized.
However, the material is not adequate to fix an upper limit

on power and to establish a veloclty range for most efficient
flying. It would not be possible to obtain Tucker's typicai_
ll-shaped curve for energy utilization rate vs. speed over the
whole range, because low speeds give rise to different
aerodynamic conditions (braked flight, hovering), for which the
numerical method employed here cannot be used.

Lastly, we should also mention some other attempts at
solving the problem of the flight power of birds from the
physical-aerodynamic angle. Although earlier works (Cehme 1963,
1965, 1968a) did start with the basic concept of the propeller
model, they then attempted a highly detailed execution with the
required perame*ers, which could only be assumed throughout.



Moreover, a calculating method from propeller engineering was
used to obtain an effective radius of 0.7 R, wlthout making
adequate allowance for the wing geometry of birds. Consequently,
the powers obtained at that time were too large and were revised
in conjunction with the application of the new methods. Pennyculck
(1968b), in his studies on energy expenditure by pilgeons in
horizortal flight, took a somewhat different theoretical
approach. Since his findings led him to more general conclusions
on flight power (Pennycuick 1969), this work must be discussed

in somewhat more detail. He derived total flight power from
three components: the weight c¢f the bird, the profile drag of
the wing, and the body drag. Doubts can be legitimately be
raised regarding the usability of the coefficients employed

for the aerodynamic forces. These coefficients were obtailned /456
from wind-tunnel studies (Pennycuick 1968a), which in no way
reproduced normal gliding flight, but instead corresponded

more or less closely to a landing approach with strong deceleration
(see also Oehme 1970a). Also, the doves used in the flight
studies obviously could not be made to fly normally, as

can be seen from the pictures and descriptions, but instead

flew more or less in a "braking attitude" (see Brown 1948;

Oehme 1968b). That they were at their power limits at a

velocity of 16 m/sec in this arrangement is evident, but to
conclude that "the pigeon" 1is incapable of flying faster over

a long period of time is certainly incorrect. If the drag
coefficients employed, and the power components calculated

from them, were too high, the weight-compensating "induced

power" is too small, because the calculations were carried out
simply with the induced vertical velocity, ignoring the fact

that the wings are making a rotary movement. Moreover, the

time course of the wing strcke was rather brutally simplified.
Since the errors largely cancel out, the resulting values fit
into the spectrum presented here. The long-term power of the

0.4 kg dove 1s stated to be 8.7 W at v = 8 m/sec and 1U.5 W at
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16 m/sec. This corresponds to an average relative power

(Fab . tab/tges)/c of 0.030 HP/kg - 0.036 HP/kg. Pennycuick's
idea of handling design questions of flying animals (aerodynamic
quality, speed range, optimum traveling speed, range in prolonged
flight; their interrelationships and relation to size of animal,
etc.) iIs completely correct. However, a sufficient amount of
meaningful data would have assicted the generalization. The

method described here willl contribute to supplying this data.

Summarx

In order to determine the power of a bird's pectoral
muscles in free level flight, a procedure was developed on the
basis of an airscrew calculation. The procedure avoids the
use of aerodynamic force coefficients, which cannot be measured
in the flying bird.

Together with angular velocity, the tangential force
necessary to generate the required lift in the downstroke and
the distance along the wing from the shoulder joint to the
point of application of the tangential force yield the dow.stroke
power.

Required morphological data are the total weight, the
welght of the two pectoral muscles, the liength of the wing
extended in downstroke position, from shoulder joint to wing
tip, and the location of the body contour along the wing length.

Kinematic data are obtained from time-lens films. These
data are: the duration of the downstroke, the duration of
accelerated rotation at the beginning of the downstroke, and the
duration of the entire stroke cycle, the flight speed, the
stroke angles, and the positions of their angle blsectors
relative to the horizontal.
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Nine pigeon flights and seven Turkish dove flights are
analyzed with the method of calculation. Comparisons with
metabolic-physiological studies confirm the usability of this.
method and also support the theoretical assumptions.

The specific power capacity of the pectoral muscles in
both species (0.26-0.60 HP/kg) under prolonged load is 10 to
20 times that of mammal muscles, except, probably, for the

flight muscles of bats.
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